Tackling the Gross-Pitaevskii energy functional with the Sobolev gradient – Analytical and numerical results

نویسندگان

  • Parimah Kazemi
  • Michael Eckart
چکیده

In the first part of this contribution we prove the global existence and uniqueness of a trajectory that globally converges to the minimizer of the Gross-Pitaevskii energy functional for a large class of external potentials. Using the method of Sobolev gradients we can provide an explicit construction of this minimizing sequence. In the second part we numerically apply these results to a specific realization of the external potential and illustrate the main benefits of the method of Sobolev gradients, which are high numerical stability and rapid convergence towards the minimizer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation

In this paper we improve traditional steepest descent methods for the direct minimization of the Gross-Pitaevskii (GP) energy with rotation at two levels. We first define a new inner product to equip the Sobolev space H1 and derive the corresponding gradient. Secondly, for the treatment of the mass conservation constraint, we use a new projection method that avoids more complicated approaches b...

متن کامل

A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation

We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the f...

متن کامل

Higher Order Energy Conservation, Gagliardo- Nirenberg-sobolev Inequalities, and Global Well-posedness for Gross-pitaevskii Hierarchies

We consider the cubic and quintic Gross-Pitaevskii (GP) hierarchy in d dimensions, for focusing and defocusing interactions. We introduce new higher order conserved energy functionals that allow us to prove global existence and uniqueness of solutions for defocusing GP hierarchies, with arbitrary initial data in the energy space. Moreover, we prove generalizations of the Sobolev and Gagliardo-N...

متن کامل

A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-dimensional Bose Gas

We consider the ground state properties of an inhomogeneous twodimensional Bose gas with a repulsive, short range pair interaction and an external confining potential. In the limit when the particle number N is large but ρ̄a2 is small, where ρ̄ is the average particle density and a the scattering length, the ground state energy and density are rigorously shown to be given to leading order by a Gr...

متن کامل

Higher Order Energy Conservation and Global Wellposedness of Solutions for Gross-pitaevskii Hierarchies

We consider the cubic and quintic Gross-Pitaevskii (GP) hierarchies in d dimensions, for focusing and defocusing interactions. We introduce new higher order energy functionals and prove that they are conserved for solutions of energy subcritical defocusing, and L2 subcritical (de)focusing GP hierarchies, in spaces also used by Erdös, Schlein and Yau in [11, 12]. By use of this tool, we prove a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009